Learning Optical Flow
نویسندگان
چکیده
Assumptions of brightness constancy and spatial smoothness underlie most optical flow estimation methods. In contrast to standard heuristic formulations, we learn a statistical model of both brightness constancy error and the spatial properties of optical flow using image sequences with associated ground truth flow fields. The result is a complete probabilistic model of optical flow. Specifically, the ground truth enables us to model how the assumption of brightness constancy is violated in naturalistic sequences, resulting in a probabilistic model of “brightness inconstancy”. We also generalize previous high-order constancy assumptions, such as gradient constancy, by modeling the constancy of responses to various linear filters in a high-order random field framework. These filters are free variables that can be learned from training data. Additionally we study the spatial structure of the optical flow and how motion boundaries are related to image intensity boundaries. Spatial smoothness is modeled using a Steerable Random Field, where spatial derivatives of the optical flow are steered by the image brightness structure. These models provide a statistical motivation for previous methods and enable the learning of all parameters from training data. All proposed models are quantitatively compared on the Middlebury flow dataset.
منابع مشابه
Occlusion Aware Unsupervised Learning of Optical Flow
It has been recently shown that a convolutional neural network can learn optical flow estimation with unsupervised learning. However, the performance of the unsupervised methods still has a relatively large gap compared to its supervised counterpart. Occlusion and large motion are some of the major factors that limit the current unsupervised learning of optical flow methods. In this work we int...
متن کاملLearning Optical Flow from Real Robot Data
This project presents a method for teaching robot arms optical flow. By extending recent works on depth based, probabilistic robot tracking, a novel real-world optical flow dataset with dense ground truth annotation is generated. A real, robotic dataset boasts the inclusion of phenomena that synthetic datasets cannot model. With this data a generic convolutional neural network is implemented to...
متن کاملUnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss
In the era of end-to-end deep learning, many advances in computer vision are driven by large amounts of labeled data. In the optical flow setting, however, obtaining dense perpixel ground truth for real scenes is difficult and thus such data is rare. Therefore, recent end-to-end convolutional networks for optical flow rely on synthetic datasets for supervision, but the domain mismatch between t...
متن کاملGuided Optical Flow Learning
We study the unsupervised learning of CNNs for optical flow estimation using proxy ground truth data. Supervised CNNs, due to their immense learning capacity, have shown superior performance on a range of computer vision problems including optical flow prediction. They however require the ground truth flow which is usually not accessible except on limited synthetic data. Without the guidance of...
متن کاملLearning Parameterized Models of Image Motion
A framework for learning parameterized models of optical flow from image sequences is presented. A class of motions is represented by a set of orthogonal basis flow fields that are computed from a training set using principal component analysis. Many complex image motions can be represented by a linear combination of a small number of these basis flows. The learned motionmodels may be used for ...
متن کاملSemi-Supervised Learning for Optical Flow with Generative Adversarial Networks Supplementary Material
In this supplementary document, we present additional results to complement the paper. First, we provide the detailed configurations and parameters of the generator and discriminator in the proposed Generative Adversarial Network. Second, we present the qualitative comparisons with the state-ofthe-art CNN-based optical flow methods. The complete results and source code are publicly available on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008